Optimal full matching for survival outcomes: a method that merits more widespread use

نویسندگان

  • Peter C. Austin
  • Elizabeth A. Stuart
چکیده

Matching on the propensity score is a commonly used analytic method for estimating the effects of treatments on outcomes. Commonly used propensity score matching methods include nearest neighbor matching and nearest neighbor caliper matching. Rosenbaum (1991) proposed an optimal full matching approach, in which matched strata are formed consisting of either one treated subject and at least one control subject or one control subject and at least one treated subject. Full matching has been used rarely in the applied literature. Furthermore, its performance for use with survival outcomes has not been rigorously evaluated. We propose a method to use full matching to estimate the effect of treatment on the hazard of the occurrence of the outcome. An extensive set of Monte Carlo simulations were conducted to examine the performance of optimal full matching with survival analysis. Its performance was compared with that of nearest neighbor matching, nearest neighbor caliper matching, and inverse probability of treatment weighting using the propensity score. Full matching has superior performance compared with that of the two other matching algorithms and had comparable performance with that of inverse probability of treatment weighting using the propensity score. We illustrate the application of full matching with survival outcomes to estimate the effect of statin prescribing at hospital discharge on the hazard of post-discharge mortality in a large cohort of patients who were discharged from hospital with a diagnosis of acute myocardial infarction. Optimal full matching merits more widespread adoption in medical and epidemiological research. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes

There is increasing interest in estimating the causal effects of treatments using observational data. Propensity-score matching methods are frequently used to adjust for differences in observed characteristics between treated and control individuals in observational studies. Survival or time-to-event outcomes occur frequently in the medical literature, but the use of propensity score methods in...

متن کامل

I-11: Optimal Strategy Toward Fertility Preservation

Background There are several indications of human female gamete cryostorage including sub-fertile and fertile patients. But our focus will be in women at risk of losing their reproductive function caused by oncologycal treatments or premature ovarian failure that could benefit greatly from this practice. Fertile women may take advantage of this technology to electively delay childbearing. The o...

متن کامل

Analytical Matching of Optimal Damping Characteristics Curve for Vehicle Passive Suspensions

To facilitate the damping matching of dampers for vehicle passive suspensions, this paper proposes an analytical matching method of the optimal piecewise linear damping characteristics curve. Based on the vehicle vibration model, taking the suspension dynamic deflection as the constraint, by the vibration acceleration and the wheel dynamic load, an objective function about the relative damping ...

متن کامل

Estimating the effect of treatment on binary outcomes using full matching on the propensity score

Many non-experimental studies use propensity-score methods to estimate causal effects by balancing treatment and control groups on a set of observed baseline covariates. Full matching on the propensity score has emerged as a particularly effective and flexible method for utilizing all available data, and creating well-balanced treatment and comparison groups. However, full matching has been use...

متن کامل

Constrained Nonlinear Optimal Control via a Hybrid BA-SD

The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2015